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Abstract

The global community is projected to fail in achieving the United Nation’s goal of universal access to affordable,
reliable, sustainable and modern electricity by 2030. This is ultimately due to inadequate levels of investment. Efforts
to right-size infrastructure investments promise improved efficiency: right-sized infrastructure yields more connec-
tions with better reliability for every dollar invested. Because of this, geographic information systems, electrification
planning models, and methods for characterizing electricity supply and demand have received growing attention as
ways to support improved investment decision-making at scale.

In this paper, we highlight an underrepresented and complementary area of research that promises significant value
for infrastructure investment decision-making: probabilistic electricity demand forecasting. This paper is organized in
three main parts. In the first, we discuss ways in which probabilistic electricity demand forecasts can provide unique
value by elucidating economically viable investments that would otherwise be foregone due to misperceptions of their
risk. By doing so, probabilistic forecasts have the potential to bolster private investment and expand the resource pool
available for electrification and energy for growth. We also discuss how probabilistic forecasts can aid in efforts to
efficiently incentivize low-carbon electricity supplies in support of climate goals.

In the second part of this paper, we highlight the fact that probabilistic forecasting models are underrepresented in
the literature when it comes to low-access countries. The most prominent forecasts reflect point forecasting methods
and demonstrate high variability when compared to historical electricity consumption. There is significant need for
probabilistic methods to be applied in this space; probabilistic methods allow for a more informative and transparent
way to communicate the expected quality of individual electricity demand forecasts.

In the third and final part of this paper, we highlight a specific model used for probabilistic electricity demand
forecasting in the literature: the LDF model. We qualitatively describe useful attributes and limitations of the LDF
model and similar probabilistic methods for probabilistic forecasting. We do this with the hope of outlining key
modeling concepts that decision-makers should know before employing probabilistic forecasts.

Keywords: energy for growth, electricity access, electricity demand, demand forecasting, probabilistic load
forecasting, electrification planning, sustainable development goals, decarbonization, machine learning

1. Introduction sal access to affordable, reliable and modern energy ser-

vices” by the year 2030 [1]. Under the International En-

There is general consensus that the global community
is off-track from realizing the United Nation’s Sustain-
able Development Goal #7 (SDG7) target of “univer-
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ergy Agency’s (IEA) central “Stated Policies Scenario,”
660 million people are expected to be without electric-
ity access in 2030 [2]. Rates of improvement are ex-
pected to be modest on net, considering that 840 million
were estimated without access in 2019 [3]. If we are to
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achieve SDG7, the IEA estimates that $35 billion must
be spent annually from 2021 to 2030 on generation and
network infrastructure towards these ends [2].

Given investment deficits with regards to SDG7,
stretching the value of every dollar spent and eliminat-
ing inefficiencies is imperative. Right-sizing infrastruc-
ture investments to adequately meet electricity demand
is central to this endeavor. We can appreciate the value
of right-sizing infrastructure by highlighting the risks of
over-sizing and under-sizing.

If infrastructure is over-sized relative to demand, cus-
tomers will be penalized by indirectly paying the costs
of generation and network capacity that is never used
or will not be used for years. This results in higher
costs and disincentivizes consumption.  Addition-
ally, because low-access regions experience resource-
constraints, overbuilding in some areas means that re-
sources are diverted from underserved areas that would
otherwise yield significant benefit from them. In this
way, overbuilding makes it so that those without ac-
cess will remain without electricity for longer periods
of time.

If infrastructure is under-sized relative to demand,
consumers will experience power outages and industry
will suffer. While subsequent upgrades can be made,
these investments will miss out on attractive opportuni-
ties for exploiting economies of scale in generation and
storage, in addition to opportunities for improved net-
work utilization efficiency [4].

Cases of poorly-sized energy infrastructure pervade
the sector globally. In 2018, Pakistan paid $4.7 billion
in idle capacity charges due to over-sizing [5]. Con-
versely, from 2003-2006, infrastructure under-sizing led
to severe power shortages in China [6, 7]. Even U.S.
consumers are affected: generating capacity in the U.S.
exceeds required reserve margins by 30%, costing bil-
lions per year [8]. In each of these cases, inaccurate
electricity demand (i.e. load) forecasts are known to
have played a central role [5, 6, 7, 8]. Over-sizing is the
direct result of over-forecasting demand, while under-
sizing stems from under-forecasting. As such, electric-
ity demand forecasts are key to right-sizing infrastruc-
ture.

Empirical evidence for the importance of accurate
forecasting is supported by techno-economic models
run at multiple spatial and temporal scales [9, 10, 11, 12,
13, 14, 15]. A study employing a building-level electri-
fication model for 366 thousand customers in Uganda
demonstrates how electricity unit costs in low-demand
scenarios may be nearly three times those in high-
demand scenarios resulting from economies of scale
and network utilization improvements [16]. Better fore-

casts allow planners to pursue such economies while
minimizing the risk of over-sizing.

While forecast accuracy is critical, forecasting for the
power sector and other sociotechnical systems is gener-
ally difficult. There are limits to how accurate electric-
ity demand forecasts can be in the face of intrinsically
unknown drivers of the power sector, including techno-
logical advancements, public policy, a changing popu-
lation, and climate variability. The future is inherently
uncertain.

In this paper, we seek to elucidate the importance of
quantifying a forecasting attribute other than accuracy:
forecast uncertainty. In addition to providing point fore-
casts that describe what a model perceives to be the most
likely future outcome, models can also be used to pro-
vide a characterization of its uncertainty (or conversely,
its certainty) pertaining to a forecast by way of present-
ing probability distributions. Specialized techniques
from statistics and machine learning are well-suited to
providing such output as they may learn to characterize
uncertainty by evaluating how well historical consump-
tion data fits candidate distributions. Distributions that
underestimate uncertainty are penalized as are those that
overestimate uncertainty. Fig. 1 illustrates an example
of what a probabilistic forecast may look like.

From a power sector decision-maker’s perspective, an
estimate with high uncertainty (low certainty) could ul-
timately mean something very different than one with
low uncertainty (high certainty), even if the distributions
provided center around the same mean forecast. All else
equal, decision-makers should make more conservative
investments when presented with more uncertain fore-
casts due to risk-aversion. This may mean investing in
smaller generation, storage, and network assets, or in-
vesting in grid-compatible mini-grid assets so the option
(or “real option™) is available to connect to the grid at
a later date. In other cases, this may mean delaying in-
vestments until better information or more resources are
available. Conversely, these decision-makers should be
more bold when presented with higher-certainty fore-
casts. They may wish to build larger, sooner, to take
advantage of economies of scale that are more likely to
bear fruit. Analogous considerations affect infrastruc-
ture decision-making around ways to most efficiently
meet climate goals under demand uncertainty.

In our view, forecast uncertainty is wrongly under-
represented in electricity forecasting and planning com-
munities, especially when considering low-electricity-
access (low-access) regions with poor data availability.
If forecasts are made, they are too often represented
by point-estimates that are likely to engender overcon-
fidence. In this paper, we contextualize the need for in-
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Figure 1: An example of probabilistic forecasts for Sene-
gal at the country-level. A backtest for Senegal electricity
consumption from 2003 to 2017 is shown. The model ob-
serves consumption data corresponding to the time-series in
black and provides forecasts with different credible regions as
shown in blue. Historical consumption trends that are unob-
served by the model are shown in red. Figure from [17] with
permission.

creased attention to the development and use of proba-
bilistic electricity demand forecasting (i.e. probabilistic
load forecasting) models in low-access settings.

This paper is organized as follows. Section 2 moti-
vates the value that probabilistic demand forecasts can
provide in low-access contexts. Section 3 highlights key
examples of where probabilistic attributes have gone
overlooked in the sector. Section 4 reviews a notable
modeling effort that provides probabilistic demand fore-
casts at the country-level as an example to outline key
concepts that decision-makers should know before em-
ploying such forecasts.

2. Assessing the value of probabilistic forecasts

Future electricity demand is uncertain because its hu-
man, environmental, and technical drivers are them-
selves uncertain. For instance, we could not have pre-
dicted the exact nature of the COVID-19 pandemic and
its effects on power consumption years before the first
human outbreaks. Neither can we determine when the
next major economic recession will occur, what polit-
ical party will drive U.S. climate policy in five years
time, or what battery storage costs will be a decade from
now. Because of this inherent uncertainty, we believe
that in many cases, electricity demand forecasts should
be probabilistic in nature. These characterizations can
be informed by data on past and present experiences.

The uncertainty intrinsic to electricity demand fore-
casting varies by time and space. For example, be-
cause aggregate electricity demand generally evolves in
a smooth and continuous manner, it should naturally be
easier to forecast near-term demand with high certainty
than doing so with long-term demand. Another example
pertains to regional stability: all else equal, areas with
less conflict can be thought to have more predictable de-
mand patterns than those with more.

Better characterizations of the intrinsic uncertainty in
future electricity demand can translate into significant
bottom-line value if coupled with the right decision-
making frameworks. Because probabilistic forecasts
and ways to employ them come in various types and
qualities, precisely estimating the total economic value
that probabilistic forecasting can provide is infeasible.
Nevertheless, in this section we outline major ways in
which forecasts can provide value, especially when con-
sidering electricity infrastructure investments in low-
access countries. We expect the potential value from
these methods to be significant given the scale of in-
vestment needed to achieve SDG7 and subsequent de-
velopment and climate goals.

2.1. Enabling beneficial investments that could not
have occurred otherwise

Perhaps the most concrete way that probabilistic elec-
tricity demand forecasts can provide value is by en-
abling economically viable investments that would oth-
erwise be foregone because of misperceptions of their
investment risks. We start this section by introduc-
ing key concepts to support the recognition of these
benefits. First, we discuss the concept of diminish-
ing marginal utility and explain how it should affect
decision-making under uncertainty. We then discuss
planning without any forecasts and planning with point
forecasts, before describing how probabilistic forecasts
can be of value.

2.1.1. Decision-makers under uncertainty should be
risk-averse and favor smaller and more modular
investments

The concept of diminishing marginal utility (DMU) is
fundamental to thinking about public decision-making
and serving demand for electricity. In this case, DMU
reflects the fact that each unit of electricity consumed
by a given customer leads to a smaller increase in value

relative to that associated with the previous unit [18].

This means that the first units of electricity consumed

should bring consumers the most value. In practice, the

first few watts of electricity demand may be enough to



power basic but critical activities: lighting so that com-
merce and studies can continue at night, or phone charg-
ing so that important communications can be made.
Additional electricity consumption is still valuable, but
less so on a per-unit basis: consumers with improved
supplies may choose to watch television or use elec-
tric cookstoves. While economically productive uses of
electricity such as irrigating farmland and refrigeration
are also valuable, they are highly energy intensive and
are only prioritized once adequate electricity supply is
available.

Because of DMU, a decision-maker in low-access
settings should be more risk-averse when facing de-
mand uncertainty. A risk-averse decision-maker should
pursue smaller and more modular investments, all else
equal. This is because over-forecasting and over-
building entails high opportunity-costs: wasted expen-
ditures could otherwise have gone to electrify or rein-
force supplies in other, underserved areas. The net re-
sult creates a situation where consumers in some areas
are afforded extra capacity that goes unused while con-
sumers in other areas are compelled to live without elec-
tricity. Because of DMU, the expected costs from this
arrangement outweigh their benefits as high-utility de-
mand is not met. The strategy of making smaller and
more modular investments is prudent because, while it
may entail the potential for missing out on economies of
scale, it decreases the chances of over-building. While
chances of under-building are increased, the use of mod-
ular supply technologies allow subsequent upgrades and
can mitigate potential ramifications pertaining to inade-
quate supply reliability.

2.1.2. Planning without forecasts

In the absence of any forecast whatsoever, investors
are left with only their prior expectations about demand
to plan investment decisions. This translates to signif-
icant decision-making uncertainty. Given the fact that
risk-averse decision-makers with demand uncertainty
should favor smaller and more modular investments,
only very small investments with economic viability
are likely to be made, entailing high per-unit electricity
costs. In practice, this may mean an over-reliance on so-
lar kits when underlying demand may instead be able to
substantiate much larger minigrid systems or grid con-
nections which derive greater benefit from economies of
scale.

Planners can still work to find suitable sites by sur-
veying and collecting better data; however, site-by-site
surveys can be both costly and slow, keeping it such that
economically viable but unknown investment opportu-
nities remain hidden for undue periods of time.

2.1.3. Planning with point forecasts

It as an improvement for decision-makers to at least
be equipped with point forecasts; nevertheless, point
forecasts still have notable weaknesses.

Even if point forecasts are accurate on average, the
uncertainty inherent in sociotechnical systems and lim-
ited input information mean that individual point fore-
casts will necessarily exemplify error. If decision-
makers wrongly interpret individual forecasts to be
highly certain, they will treat the forecasts with overcon-
fidence when making decisions and will be more likely
to overbuild, yielding inefficiencies that prevent other
beneficial investments from taking place. As described
before, the expected social costs from overbuilding in
low-access regions can be pernicious as it means unused
supplies are availed in one place at the expense of for-
going higher-value electricity consumption elsewhere.
On a society-wide level, these costs are likely to signif-
icantly outweigh expected benefits because of DMU.

The situation can be similarly damaging if decision-
makers do not know how trustworthy the forecast is
likely to be. They may remain too weary to make oth-
erwise sound investments without first still incurring
the financial and temporal costs of surveying and data
gathering. Economies of scale will be harder to realize
if risk-averse decision-makers are too uncertain about
forecasts. As in the “planning without forecasts” case,
significant value will be left on the table.

Without communicating uncertainty, inaccuracies
from outliers in point-forecasts can additionally engen-
der the development of human stigmas that undermine
what value point forecasts have the potential to bring.

2.1.4. Planning with probabilistic forecasts

Probabilistic forecasts allow decision-makers to
make better decisions in the face of future uncertainty.
They can implicitly or explicitly combine these prob-
abilistic characterizations with functions of social util-
ity and attempt to maximize the expected utility from
their investments [19]. Probabilistic characterizations
allow decision-makers to better tune their infrastruc-
ture investment strategies, fully accounting for the ef-
fects of DMU and economies of scale. All else equal,
this should equate to targeting investment projects that
provide higher value while also being characterized by
lower demand uncertainty. Such projects would be over-
looked for less beneficial projects in the absence of
probabilistic descriptions. Only when low-risk high-
value opportunities are realized should decision-makers
choose to make investments with lower value or higher
uncertainty.



The value of improved information via probabilistic
forecasts also has major implications when considering
the importance of ‘unlocking’ private sector investment
in electricity infrastructure for most low-access coun-
tries. In these countries, public funding is at all times
stretched as far as it can go. In contrast, the private sec-
tor represents a comparably boundless source that could
manifest reliable electricity connections if viable busi-
ness cases can be made [20, 21]. Probabilistic forecasts
have the promise to illuminate such viable cases and
make progress that would not be realized otherwise.

2.2. Valuing flexibility via real options analysis

In the previous section, we abstractly introduce
how probabilistic demand forecasts can yield improved
decision-making considering uncertainty and the effects
of DMU and economies of scale. These decisions can
be made more concrete by assessing the value of flex-
ibility afforded by some infrastructure classes and not
others.

The value of flexibility can be assessed using meth-
ods for real options analysis. Real options analysis
commonly models the present value of the right to make
tangible future investments assuming uncertainties in
business factors. Part of doing so may entail the defi-
nition of strategies to exercise these rights with Monte
Carlo simulations drawn from probability distributions
over input variables [22].

In the case of electricity demand uncertainty and fore-
casting, a real options analysis could focus on valuing
the flexibility provided by grid-compatible minigrids. In
this example, we consider the comparison of two types
of investment: grid-incompatible minigrids and grid-
compatible minigrids. Grid-incompatible minigrids in-
volve investment in comparatively cheaper generation,
storage, and network components that bring electric-
ity to consumers but do not meet the specifications of
the main grid. They entail lower fixed costs relative
to grid-compatible minigrids and higher variable costs
relative to the main grid. On the other hand, grid-
compatible minigrids are more expensive: they ensure
that generation, storage, and network components meet
grid specifications. All else equal, they entail higher
fixed costs relative to grid-incompatible minigrids and
the same higher variable costs relative to the grid. In a
world without the potential for centralized grid connec-
tions, it would only make sense to build simple mini-
grids because of their lower fixed costs; however, grid-
compatible minigrids can be advantageous if demand
reaches levels that justify connection from the main
grid. The main grid can provide reliable electricity with
comparatively lower variable costs by taking advantage

of much larger economies of scale. If this occurs, as-
sets from a grid-compatible minigrid can be subsumed
by the main grid, while those from simple minigrids be-
come obsolete and expenditures in redundant grid-spec
assets become necessary. The decision on whether to
spend more upfront on a minigrid with the ‘real op-
tion’ to connect to the main grid depends fully on the
perceived probability that high demand will eventually
warrant connection to the main grid. Better probabilis-
tic characterizations of this demand can support rational
decision-making pertaining to such investments in flex-
ibility.

Considerations of flexibility extend beyond the grid-
compatible minigrid case. They also apply to possible
investments in extensible and modular mini-grid com-
ponents and solar kits, and more flexible generation and
storage assets. Flexibility is also apparent when sim-
ply considering the value of doing nothing and wait-
ing for the future when improved information arises
about demand, new storage technologies, and other un-
certain factors. Understanding the context behind when
these technologies should be employed ultimately rests
on characterizing probability distributions surrounding
business factors including demand. Better forecasts
promise to inform strategies for exploiting flexibility
and realizing the value of flexible technologies.

In their 2011 book, de Neufville and Scholtes present
a simple, contrived example of how uncertainty regard-
ing electricity demand can provide value when building
a thermal power plant. Considering variability in de-
mand can help plant managers avoid over-forecasting
expected profitability through the probabilistic consid-
eration of potential downside losses associated with
non-linear plant operations costs [22]. Agaton and Karl
present a more applied example in a 2018 study that
uses the real options analysis framework to account
for electricity price, oil price, and oil tax externality
when making renewable energy investment decisions on
Palawan island in the Philippines. Though uncertainties
stem from more than just electricity price, and demand
uncertainty is not a perfect proxy for electricity price
uncertainty, the study is notable because it calculates
that the value of the option to invest in renewables can
exceed $150 million on Palawan Island alone [23].

2.3. Adaptive approaches and the value of information

With probabilistic electricity demand forecasts,
decision-makers can exercise information planning
along with infrastructure planning. Information plan-
ning stems from the fact that data provides value, and
from the propensity for model-characterized uncertainty
to decrease as more and better information is collected



and used. Users can assess model-based value of in-
formation (Vol) metrics and other information theoretic
terms associated with different input features of interest
[24]. If a piece of information’s expected Vol exceeds
the practical costs of obtaining it, a modeler would
do well to expend resources to procure it. Probabilis-
tic modeling frameworks can rationally direct the cal-
culation of Vol and investments in information along-
side physical infrastructure. Moreover, these invest-
ments can occur over rolling time frames and continue
to adapt as new information is gained, new infrastruc-
ture is built, and new revenue is collected. Though we
are not aware of empirical examples for which such
adaptive approaches to electricity infrastructure plan-
ning have been exercised at scale, the concept of Adap-
tive Electricity Access Planning has been proposed in
[25].

2.4. Climate goals and low-carbon infrastructure plan-
ning

Global climate efforts, goals, and agreements add an
additional layer of complexity to electricity infrastruc-
ture planning. Researchers are projecting that achieving
the Paris climate goals will be unlikely given current
rates of progress [26, 27]. The electric power sector
is central to these goals. In 2014, electricity and heat
accounted for 25% of global greenhouse gas emissions
worldwide [28]; however, decarbonizing broader sec-
tors of the economy will very likely necessitate expand-
ing the scope of electrification and meeting new demand
with renewable supply [29, 30].

Probabilistic characterizations of future demand in
low-access regions can be used to efficiently achieve
low-carbon electricity supplies in much the same way
they can improve infrastructure right-sizing efforts. Two
key concepts are useful to define before supporting this
claim: energy system momentum and committed emis-
sions. Energy system momentum reflects the fact that
long-lived generation, distribution, and transmission as-
sets, in addition to the regulatory frameworks that gov-
ern them, yield significant systems-level inertia. In the
context of climate, energy system momentum yields
committed emissions. Already-purchased physical as-
sets reflect sunk fixed costs and are thus advantaged rel-
ative to assets that are yet to be bought. Fossil fuel-fired
generators can be thought to have future emissions ef-
fectively embedded within them [31]. Because of this,
decisions made now affect the future carbon intensity of
the sector for decades by way of committed emissions.

These effects inform the planning problem for low-
carbon energy systems in low-access contexts. Consider

a situation in which a low-access country with electric-
ity demand uncertainty is committed to reaching some
predefined level of emissions by a future year, such as
from a Nationally Determined Contribution (NDC). If
future demand is uncertain, the target shares of renew-
able and carbon-emitting electricity generation will also
be uncertain. Too much upfront investment in fossil-
derived generation capacity and too little investment in
renewable capacity can result in futures for which it
is overwhelmingly costly and inefficient to achieve cli-
mate commitments. Too little upfront investment in
fossil-derived sources and too much investment in re-
newables can yield electricity supplies that, in the short-
term, are overly costly and unreliable due to the inter-
mittency of renewables. Understanding demand uncer-
tainty can help risk-averse decision-makers target bal-
anced levels of renewable and fossil-derived genera-
tion investment over time; this allows for improved risk
management in meeting emissions targets while seeking
to maximize economic efficiency and growth.

Characterizations of demand uncertainty can also aid
in the process of defining emissions targets such as
NDCs. If future demand is uncertain, then there are
higher chances that without uncertainty characteriza-
tion, risk-averse decision-makers will define overly-
restrictive targets that can stymie growth in the power
sector and in the economy. If future demand is more
certain, appropriate emissions targets can be used to
more effectively and equitably reduce carbon emissions
worldwide.

3. Probabilistic forecasting is underrepresented in
the literature

Despite the potential value conferred by probabilistic
electricity demand forecasts, these models are seldom
employed in low-access contexts.

A 2020 review paper focusing on electricity demand
forecasting in “low and middle income countries” by
Mir et al. exemplifies this point: while the review de-
tails the importance of accurate forecasts, surveys all of
the major model classes used to forecast electricity de-
mand, and cites over 130 articles, the authors provide
no description of the difference between a probabilistic
forecast and a point forecast, nor of the former’s relative
merits [5].

In contrast, a 2016 review paper focused exclusively
on probabilistic electricity demand forecasting by Hong
and Fan review common methods, describe notable
studies, and characterize the frontier of research in this
subfield (i.e. the need to apply probabilistic forecasting
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Figure 2: Historical and forecasted electricity consumption are shown from the IEA’s WEO series (top) and the
EIA’s IEO series (bottom).



models to account for climate variability, electric vehi-
cles, demand response, energy efficiency, and wind and
solar power generation) but fails to mention the specific
applicability and need for probabilistic demand fore-
casting in low-access contexts [32].

3.1. A mini-review

We share a table detailing our own, non-exhaustive
literature review in Table 1 in the supplement of this
paper. We searched for electricity demand forecasting
papers in Africa, specifically. Critically, there are very
few studies that provide probabilistic outputs; the vast
majority of forecasts published reflect point-estimates.
With one notable exception, all of the studies provid-
ing probabilistic outputs exclusively focus on the coun-
try of South Africa. The fact that South Africa is of-
ten considered a high-electricity-consumption outlier on
the African continent underscores the modeling gap that
exists regarding probabilistic forecasting for low-access
countries.

We highlight the one notable exception to this trend
in the first row of Table 1. It is actually a paper we wrote
as a technical companion to this specific paper [17].

Section 4 shows how [17] uses the lightweight data
fusion (LDF) methodology [33], along with long short-
term memory (LSTM) models, to provide and validate
probabilistic forecasts. We speculate that one of the rea-
sons that probabilistic electricity demand forecasts have
been slow to provide answers pertaining to low-access
countries and SDG7 is because of general data availabil-
ity issues. Even aggregated country-level forecasting
was made challenging by inconsistent data ranges and
data availabilities across key features of interest [17].

3.2. A deep dive into prominent demand scenarios

In this subsection, we review electricity demand sce-
narios provided by the IEA’s World Energy Outlook
(WEO) [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50] and the U.S. Energy Informa-
tion Administration’s (EIA) International Energy Out-
look (IEO) [51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71] series and
we compare projections by previous editions to actual
historical demand for Africa.! Data series used from

IWhile neither the IEA or EIA claim that their scenarios are
meant to be directly interpreted as “forecasts,” the “outlooks,” “fu-
tures,” or “scenarios” they share are commonly interpreted and used
as such [72]

the WEO specifically corresponds to the “Stated Poli-
cies Scenario” (or equivalently, the “New Policies Sce-
nario’”) which reflects both existing and announced pol-
icy frameworks and intentions. Data from the IEO cor-
responds to the EIA’s “reference case,” reflecting cur-
rent and anticipated trends. The IEA’s scenarios result
from the World Energy Model (WEM) [73], while the
EIA’s forecasts are driven by the World Energy Projec-
tion System (WEPS) model [74].

Both the IEA and EIA provide data and documenta-
tion associated with their modeling frameworks. The
WEM is a simulation model that links supply and de-
mand across different sectors of the economy to outline
scenarios of future energy flows, CO, emissions, and
investments. In determining electricity demand, it uses
econometric methods to relate historical data and ex-
ogenous assumptions on socioeconomic drivers to de-
termine demand-side drivers (e.g. steel production in
industry, household size, etc.). It then uses a least-
cost approach to determine fuel and technology type
allocations and accounts for efficiency levels to deter-
mine final demand levels [73]. The WEPS system is
comprised of a set of models that simulate the interna-
tional energy system, including models for global out-
put, residential demand, commercial demand, industrial
demand, and transportation demand. These models use
dynamic econometric equations, ordinary least squares
and least absolute difference regression, model selection
algorithms, and bottom-up approaches to determine de-
mand from different segments [74]. Despite the multi-
faceted and complicated nature of these systems, when
considering Africa, neither the IEA nor EIA provide
historical scenarios with country-level resolution and
instead only provide electricity consumption figures for
the whole continent.”

To get a sense of the success of their scenarios, we
choose to investigate the accuracy of the IEA and EIA’s
electricity scenarios at the continent-level via backtest-
ing. Similar backtesting analyses pertaining to total pri-
mary energy consumption was previously published by
Wolfram [75]. Here, we compile data from IEA’s WEO
between 1998 and 2019, and U.S. EIA’s International
Energy Outlook between 1995 and 2019. Fig. 2 shows
deviation between the forecasts and historical electricity
demand. Colored dashed line segments depict historical
forecasts, while the solid black line depicts actual con-
sumption values on the continent.

From Fig. 2 it is apparent that both the IEA and EIA

ZRecent editions of the WEO and associated documents by the
IEA have started to share country-level scenarios, but only for select
countries. These scenarios are also too recent to enable backtesting.



commonly change their point-estimates from year-to-
year and these estimates collectively convey high vari-
ability and uncertainty at longer time horizons. Addi-
tionally, demand growth rates have systematically been
underestimated in recent forecasts. Such historical char-
acteristics underscore the need for forecasts in the form
of estimated probability distributions. Figs. 5, 6, and 7
in the supplement reflect analogous analyses performed
for India, China, and the United States.

4. Key concepts related to machine learning-based
probabilistic forecasts

In this section we give a concrete example of what
probabilistic demand forecasts may look like and out-
line key concepts that decision-makers should know
about the model classes employed to produce these fore-
casts. In particular we highlight a recent study [17]
that provides 15-year annual probabilistic electricity de-
mand forecasts for 52 of 54 African countries. This
study uses the lightweight data fusion (LDF) method-
ology, originally developed in Dean et al. [33], that
combines probabilistic latent variable models and neu-
ral networks to learn from multiple data sources. At a
high level, LDF models a probability distribution over
electricity demand and learns a mapping from related
features—e.g., historical electricity consumption, GDP
per-capita, population, cooling degree days, heating de-
gree days, battle-related deaths, etc.—into the parame-
ters of that distribution. The instantiation of LDF in [17]
uses a long short-term memory (LSTM) network as the
mapping function and a gamma-Poisson latent variable
model; for specific modeling details see [17, 33].

Fig. 1 shares a historical forecast made for Sene-
gal. The model observes 15 years of input data between
1988 and 2002 (inclusive). The black line shows his-
torical “observed” consumption data. The model then
produces probabilistic forecasts for every year between
2003 and 2017 (inclusive) as shown using blue credible
regions. The 80% credible region reflects the smallest
interval where the model believes future consumption
will be with 80% certainty. 60%, 40%, and 20% cred-
ible regions are also plotted. Because the specific ex-
periment shown constrains the model to never observe
historical consumption data between 2003 and 2017, we
can use such unobserved historical consumption data to
validate the performance of the probabilistic forecasts.
Unobserved historical consumption is plotted with the
red line.

4.1. Useful attributes of probabilistic machine learning
forecasts

As discussed in Section 2, probabilistic forecasts can
enable beneficial investments that could not have oc-
curred otherwise, enable the valuation of flexibility, and
provide a framework for adaptive information and in-
frastructure planning systems. In this subsection, we
take a deep dive into useful features of many probabilis-
tic forecasts that decision-makers should know about to
better understand and use such forecasts.

Because we specifically focus on the LDF model [17]
in this section, some of the topics discussed will not
be applicable to all probabilistic forecasting methodolo-
gies. Nevertheless, they should be common to many
machine learning models for probabilistic forecasting,
especially those that follow a Bayesian framework for
variations of supervised learning. Bayesian methods
rely on Bayes’ Theorem which provides a way to cal-
culate the probability that an event occurs using prior
knowledge and observed data. Models employing su-
pervised machine learning use observed input-output
pairs to learn a function capable of mapping previously
unseen inputs to outputs; in the application of LDF pre-
sented, electricity consumption values in forecast years
are used treated as labels to inform output probability
distributions for electricity consumption.

4.1.1. Probabilistic machine learning models generally
follow a more inductive, as opposed to deductive,
epistemology

Fitting probabilistic forecasting methods that follow
a supervised approach necessitate historical data. As
such, we can say they follow an inductive epistemol-
ogy: the models begin with observations of reality and
learn patterns that can be tested in practice. These meth-
ods make an implicit set of assumptions: that there is
a relationship that can be learned between future elec-
tricity consumption and historical data on all of the in-
put features employed, and that this relationship per-
sists through the dates considered. The model interprets
these relationships between historical inputs and trends
fully automatically, requiring limited human input. Hu-
man input is strictly optional: users provide prior beliefs
about forecast distributions only if desired.

In contrast, some forecasting methods, including the
IEA’s WEM model [73] and the EIA’s WEPS model
[74], are systems that rely very heavily on theory and
deduced hypotheses. As such, we can say that they fol-
low a more deductive epistemology. In these systems,
modelers define specific ways in which different sectors
interact, how exogenous forecasts of input variables are
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Figure 3: Model calibration plot showing fit to data. The
50-bin histogram represents the empirical frequency that a
specific 2% probability interval was observed in a held-out
set. Figure from [17] with permission.

used, and how specific outputs must be constrained to
be consistent with other components of broader energy
systems being modeled.

While we do not argue that inductive supervised ma-
chine learning methods should be seen as substitutive
for deductive simulation models such as the WEM or
WEPS, we believe that they offer decision-makers a
valuable alternative and are made even more useful be-
cause they employ a complementary, data-driven ap-
proach to forecasting. They are reproducible and may
engender additional trust, they have setups that are
transparent and simple to explain, and are largely im-
mune to negative aspects of human bias.

4.1.2. Model calibration

Another useful attribute of probabilistic demand fore-
casts is their ability to facilitate model calibration anal-
yses. These analyses show how well forecasts made on
held-out (unseen) data performed historically, and give
an indication for how well one may expect the model to
perform in the future.

Fig. 3 represents a model calibration histogram with
50 bins that shows the frequency that empirical electric-
ity consumption fell into a 2% cumulative distribution
function (CDF) intervals within predicted (posterior)
probability distributions. These CDF intervals should
have equal probability of occurrence. Because the prob-
abilistic forecast follows the (non-uniform) negative bi-
nomial distribution, the intervals will generally corre-
spond to different ranges in units of consumption. One
way to think about these intervals is to consider each
as representing one side of a 50-sided dice. Ideally, the
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dice should be fair: all sides are ideally equally prob-
able, and with enough rolls, they should have more-
or-less equal frequencies of occurrence. This is anal-
ogous to our histogram: a perfectly calibrated model
would show a more-or-less uniform histogram. The
non-uniform histogram in Fig. 3 suggests that the
LDF model described in [17] is not perfectly calibrated.
Analogously, the dice is not perfectly fair. Histograms
closer to uniform distributions show evidence of better
model calibration than those that are further away.

4.1.3. Determining feature importance and enabling
improved interpretability

Some methods used for probabilistic electricity de-
mand forecasting, including the LDF framework used in
[17], facilitate the assessment of feature importance and
provide insight into model behavior. These attributes
can constitute novel domain-specific insight, in addition
to comprise Value of Information (Vol) metrics that can
be used to inform information investments, as discussed
in Section 2.

In the LDF model, one way to describe feature im-
portance is by determining the gradients of interpretable
quantities such as the forecast mean and forecast stan-
dard deviation with respect to input features. A positive
forecast mean gradient with respect to a given feature
means that, as that feature is increased, forecasted con-
sumption will increase on net. A positive forecast stan-
dard deviation gradient with respect to a given feature
implies that as that feature is increased, forecast uncer-
tainty will increase. A feature is more important for an

Forecast Mean Elec. Cons.
Gradient for each Input Feature

3
s dleatet st

[
22 9
L 13

Forecast Mean Elec. Cons. Gradient with
=
o
&

Respect to Z-Score Normalized Input Feature

B N S R N Vi N S
& S S R 2 &S K K &R
& e S & ¢ & & P&
<& O o 1,&0 ng &~ < 0”8 > < orb\
® I X o (&

Figure 4: Feature importance shown as the absolute value
of forecast mean (top) and standard deviation gradient
(bottom) across features. Features are ranked in descending
order of median importance. Figure from [17] with permis-
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inference if model output is more sensitive to its value:
this corresponds to a higher absolute value of normal-
ized forecast mean or absolute value of forecast stan-
dard deviation gradient.

Fig. 4 depicts a box plot for the absolute value of
forecast mean gradients relative to each input feature.
From this analysis, it is evident that expected future
electricity consumption is most affected by historical
electricity consumption, followed in descending order
by cooling degree days, battle-related deaths, heating
degree days, oil production, population, GDP per capita,
renewable energy production, natural gas production,
electricity production, natural gas net exports, oil net
exports, coal production, and coal net exports.

4.2. Limitations of machine learning-based probabilis-
tic forecasts

Three notable limitations exist when using inductive
probabilistic forecasting models: they can only be fit
when sufficient training data is available, they are not ro-
bust to unexpected changes in the relationship between
historical inputs and forecasts, and they may not be in-
terpretable in ways that more deductive models can be.

4.2.1. More training data may be required

As described earlier, supervised machine learning
models and their variations are inductive: patterns are
identified from numerous observations of input-output
data pairs. In the case of the LDF probabilistic forecast-
ing models introduced earlier, algorithms are used to
learn ground-up relationships between future consump-
tion values and inputs including historical consumption,
GDP per capita, population, cooling degree days, heat-
ing degree days, and other features to define calibrated
output probability distributions. Because of the poten-
tial complexity of the relationships between time series
input and output, hundreds of input-output pairings or
more are likely required to learn a reliable model us-
ing available information. In contrast, deductive models
(or models that are at least more deductive) often re-
quire less training data; relationships between historical
data and input features can be defined by modelers using
existing economic, social, or technical theory. While
supervised machine learning models are optimized to
explicitly fit historical data, they have comparatively
higher data costs.

4.2.2. Models are not robust to unexpected changes in
relationships between historical data and fore-
casts

The act of forecasting is inherently extrapolative;
general relationships are learned from historical data to

11

extrapolate into the future. Challengingly, relationships
bewteen past and future may change over time. For in-
stance, improvements to air conditioning efficiency may
be thought to decrease the influence that cooling degree
days (a measure of how much cooling is needed over a
particular time span) has on electricity consumption.

Probabilistic forecasting models can capture expected
changes to relationships between historical data and
forecasts through characterizations of forecast uncer-
tainty. If historical trends in these relationships are
found to be unstable, the model will be rewarded if it
increases forecast uncertainty. This is related to the as-
sumption that future forecasting uncertainty should be
similar to past forecasting uncertainty. This assump-
tion falls apart, however, if sudden shifts in historical
data-forecast relationships occur in ways and with mag-
nitudes that are not observed in historical training data.

Following our previous example, a sudden and un-
expected improvement in electric appliance efficiency
would likely yield over-estimations of future electric-
ity demand. Similar effects may be observed with
changes to electricity prices, shifts in economic ac-
tivities, consumer preferences, and other phenomena.
While these limitations are common to all inductive
forecasting models, other, more deductive frameworks
may deal with them better. For instance, it may be
easy for an expert to know that electricity prices will
decrease at some point in the future given the construc-
tion of new local generating capacity. Incorporating this
knowledge in deductive simulation-based models may
be more straightforward than in models following in-
ductive frameworks.

4.2.3. Models are still not fully interpretable

In Section 4.1.3 we describe how probabilistic fore-
casting models may lend themselves to analyses that af-
ford improved levels of model interpretability. Specifi-
cally, feature-specific gradients from the LDF model are
described that can inform analysts about how mean con-
sumption values and forecast uncertainty change with
input perturbations. Nevertheless, important aspects of
models based on artificial neural networks such as the
LSTM used in this application of the LDF model, re-
main difficult to interpret due to their complexity. In
contrast, simpler models and models based on more
deductive principles may be easier to interpret, and in
some ways better garner human trust.

5. Conclusion

In this paper, we discuss ways in which probabilis-
tic electricity demand forecasts can provide value to in-



frastructure planning endeavors in low-access countries.
Among other things, they can enable investments that
could not occur otherwise. By doing so, they have the
potential to expand the resource pool available for elec-
trification efforts by incentivizing private investment.

We also show evidence that such probabilistic meth-
ods are underrepresented in the literature when it comes
to low-access countries. Additionally, even the most
prominent point forecasts demonstrate high variability
when compared to historical electricity consumption.
We use these observations to highlight the need for
probabilistic methods to be applied in this space.

Finally, we highlight a specific model used for proba-
bilistic electricity demand forecasting: the LDF model.
This model is based on methods for Bayesian infer-
ence and artificial neural networks and follows an in-
ductive epistemology. We qualitatively describe useful
attributes and limitations of the LDF model and simi-
lar promising methods for probabilistic forecasting. We
do this with the hope of outlining key modeling con-
cepts that decision-makers should know before employ-
ing such probabilistic forecasts.
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Supplemental Information

6.1. IEA and EIA Historical Forecasts for India, China,
and the U.S.

Fig. 5, 6, and 7 show historical electricity demand
and historical forecasts from the IEA and EIA for India,
China, and the U.S., respectively.

6.2. Predictive, Explorative, and Normative Models

Future energy scenarios can be classified according
to the types of questions they seek to answer. Predictive
scenarios answer the question “what will happen in the
future?” Predictive scenarios are often informed by data
on the historical and current states of a system being an-
alyzed. Explorative scenatios seek to answer the ques-
tion, “what can happen in the future?”, and generally
outline points along a range of possible conditional out-
comes. Lastly, normative scenarios answer the question
“how can a specific target be reached?”” These scenarios
are often constructed by modeling some future state of a
system, and then working backwards to understand how
those outcomes could be realized [76].

Each of these three modeling types have applications
that they are well-suited for; however, predictive scenar-
ios are most useful for planning concrete investments in
electricity infrastructure in low-access countries. Plan-
ners need to consider forecasts of what is actually likely
to occur in the future to right-size network, generation,
and storage investments.

Table 1 shows a non-exhaustive review of existing
electricity forecasting studies for countries and regions
in Africa. In these tables, we classify models by predic-
tive, explorative, and normative model types; whether or
not the model is probabilistic; the number of national-
level forecasts presented; whether or not forecasts are
provided at the region- or continent-level; whether or
not forecasts are global in scope; and the forecast time
horizon. The LDF model [17] described in Section 4 is
highlighted in the table.



Historical and IEA Forecasted Total Electricity Consumption in India
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Figure 5: Comparing historical electricity demand and historical forecasts for India. Forecasts are shown from
the IEA (top) and EIA (bottom).
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Historical and IEA Forecasted Total Electricity Consumption in China
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Figure 6: Comparing historical electricity demand and historical forecasts for China. Forecasts are shown from
the IEA (top) and EIA (bottom).
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Historical and IEA Forecasted Total Electricity Consumption in the United States
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Figure 7: Comparing historical electricity demand and historical forecasts for the United States. Forecasts are
shown from the IEA (top) and EIA (bottom).
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Table 1: Table with attributes of electricity demand forecasting studies in Africa.

Model Type Geographic Scope
©
=
2
° o
Q
2§88 £ T %0
2 S E 3 g ° g
Author Year  Title Methodology @ S 5 5 5 o 9 Forecast Time Horizon ~ Ref.
A - Z ~ Z ~ O
1 Lee et al. 2020  Probabilistic forecasts of country-level LDF, LSTM v v 52 v 2016-2031 [17]
electricity demand in Africa
2 Adebola 2011  Electricity consumption and economic ARIMA v 1 2009-2016 [77]
growth: Trivariate investigation in Botswana
with capital formation
3 Adedokun 2016  Nigeria electricity forecast and vision 2020: ARIMA v v v 1 2012-2050 [78]
Evidence from ARIMA model
4 Adeoye and 2019  Modelling and forecasting hourly electricity Bottom-up; v 14 2017-2030 [79]
Spataru demand in West African countries Linear Model-
Based
5 Adom and Bekoe 2012 Conditional dynamic forecast of electrical ARDL; PAM v 1 2009-2020 [80]
energy consumption requirements in Ghana
by 2020: A comparison of ARDL and PAM
6 Bazilian et al. 2012 Energy access scenarios to 2030 for the power ~ Heuristic v v v 2010-2030 [81]
sector in sub-Saharan Africa
7 BP 2020  Energy Outlook 2020 Proprietary v v v 2018-2050 [82]
8  Van Buskirk 2006  Analysis of long-range clean energy Economic, De- vV 1 2000-2100 [83]
investment scenarios for Eritrea, East Africa ductive
2009
9 Chikobvu and 2012 Regression-SARIMA modelling of daily peak ~ SARIMA; v v 1 [84]
Sigauke electricity demand in South Africa Regression- (14 days)
SARIMA
10 ExxonMobil 2019  Outlook for Energy: A perspective to 2040 Proprietary v v v v 2017-2040 [85]
11 Ezennaya 2014 Analysis of Nigeria’s national electricity Linear Model- Vv 1 2013-2030 [86]
demand forecast (2013-2030) Based
12 Ezenugu et al. 2017  Modelling and Forecasting of residential Multiple and Vv 1 2015-2029 [87]
electricity consumption in Nigeria using Quadratic
Multiple and Quadratic regression models Regression
13 Guefano et al. 2020  Forecast of electricity consumption in the Grey and Vec- Vv 1 2018-2025 [88]
Cameroonian residential sector by Grey and tor Autoregres-
vector autoregressive models sive Models
14 Inglesi 2010  Aggregate electricity demand in South Africa:  Linear Model- v 1 2006-2030 [89]

Conditional forecasts to 2030

Based
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2 3 g E] g ° 2
Author Year  Title Methodology @ S 5 S = on ° Forecast Time Horizon  Ref.
£ @ oz & z 2 O
15  International 2020  World Energy Outlook Econometric v v Vv 1 v v 2025-2040 [90]
Energy Agency Methods;
Simulation-
Based Model
16  International 2013 West African power pool: Planning and Extrapolation v 13 2010-2050 [91]
Renewable prospects for renewable energy
Energy Agency
17 International 2020  Global Renewables Outlook: Energy Bottom-up v v v v 2016-2050 [92]
Renewable transformation 2050
Energy Agency
. . . . 2012
18  Lebotsa et al. 2018  Short term electricity demand forecasting Partially Linear v/ v 1 [93]
using partially linear additive quantile Additive Quan- (hourly)
regression with an application to the unit tile Regression
commitment problem
19  Marwala and 2014  Forecasting electricity consumption in South ANNs; ARMA v 1 2012-2023 [94]
Twala Africa: ARMA, neural networks and
neuro-fuzzy systems
20  Mokilane et al. 2018  Density forecasting for long-term electricity Quantile Re- v v 1 2013-2023 [95]
demand in South Africa using quantile gression
regression
21 Momodu et al. 2017  Low-carbon development strategy for the Systems  Dy- v v 2015-2060 [96]
West African electricity system: preliminary namics
assessment using System dynamics approach
22 Okoboi and 2016  Electricity peak demand in Uganda: insights Linear Model- Vv 1 2014-2021 [97]
Mawejje and foresight Based (Double
Exponential
Forecasting
Model)
23 Ouedraogo 2017  Africa energy future: Alternative scenarios Bottom-up v v 2010-2040 [98]
and their implications for sustainable (LEAP)
development strategies
24 Ouedraogo 2017  Modeling sustainable long-term electricity Bottom-up v v 2015-2040 [99]
supply-demand in Africa (LEAP)
25  Panos et al. 2015  Powering the growth of Sub-Saharan Africa: Bottom-up v v 2050 [100]
the jazz and symphony scenarios of World (MARKAL)

Energy Council
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e £ o 3z & 8
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2 5 E ® & 5 E
Author Year  Title Methodology @ S 5 g = ) § Forecast Time Horizon  Ref.
A @ Z a Z ~ O
26  Panosetal. 2016  Access to electricity in the World Energy Bottom-up v v v 2010, 2020, 2030 [101]
Council’s global energy scenarios: An (MARKAL)
outlook for developing regions until 2030
27  Sarkodie 2017  Estimating Ghana’s electricity consumption ARIMA v 1 2014-2030 [102]
by 2030: An ARIMA forecast
28  Shibano and 2020  Electricity Consumption Forecast Model Bottom-up v 1 2010 [103]
Mogi Using Household Income: Case Study in
Tanzania
29  Sigauke 2017  Forecasting medium-term electricity demand GAMs v 1 2013 [104]
in a South African electric power supply
system
30 Sigauke and Bere 2017  Modelling non-stationary time series using a Generalized v 1 2000-2010 [105]
peaks over threshold distribution with time Pareto Distribu-
varying covariates and threshold: An tion Model
application to peak electricity demand
. . . L L 2009
31  Sigauke and 2010  Daily peak electricity load forecasting in Multivariate v 1 [106]
Chikobvu South Africa using a multivariate Non-parametric (44 days)
non-parametric regression approach Regression
32 Spalding-Fecher 2017  Electricity supply and demand scenarios for Bottom-up v 12 2015-2070 [107]
et al. the Southern African power pool
33 Taliotis et al. 2016  An indicative analysis of investment Bottom-up v 45 2020-2040 [108]
opportunities in the African electricity supply (TEMBA)
sector Using TEMBA (The Electricity Model
Base for Africa)
34 Tartibu and 2018  Forecasting net energy consumption of South ANN v 1 2014-2050 [109]
Kabengele Africa using artificial neural network
35  U.S. Energy 2020  International Energy Outlook 2020 Econometric- v v v v 2018-2050 [110]
Information Methods;
Administration Simulation-
Based Model
36  World Energy 2013 World Energy Scenarios: composing energy Bottom-up v v v v 2020-2050 [111]
Council futures to 2050 (MARKAL)



